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Cardinal Characteristics

Definitions

Definition

If f , g ∈ ωω then f dominates g iff there is a natural number
k such that for all natural numbers n ∈ ω \ k we have
f (n) > g(n). A family F ⊂ ωω is unbounded iff for all g ∈ ωω
there is an f ∈ F not dominated by g and it is dominating if
for every g ∈ ωω there is an f ∈ F which dominates g .

b := min {#F | F is unbounded.}
d := min {#F | F is dominating.}
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Cardinal Characteristics

Definitions

Definition

For x , y ∈ [ω]ω we say that x splits y if both y ∩ x and y \ x
are infinite. A family F ⊂ [ω]ω is called splitting if for all
x ∈ [ω]ω there is a y ∈ F which splits x . It is reaping if for all
x ∈ [ω]ω there is a y ∈ F which is not split by x .

s := min {#F | F is splitting.}
r := min {#F | F is reaping.}
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Cardinal Characteristics

A Diagram
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Other Combinatorial Principles

Definitions

Definition (Ostaszewski 1976)

♣ is the statement that there is a sequence 〈Aα|α < ω1〉 such
that for every α, Aα is cofinal in ωα and for every uncountable
X ⊂ ω1 there is an α < ω1 with Aα ⊂ X .

Definition (Broverman, Ginsburg, Kunen, Tall, 1978 and
Fuchino, Shelah, Soukup 1997)

|• := min {#X | X ⊆ [ω1]ω ∧ ∀y ∈ [ω1]ω1∃x ∈ X : x ⊆ y}.

Theorem (Baumgartner 1976)

|• < c is consistent.
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Other Combinatorial Principles

A Diagram
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Other Combinatorial Principles

Crossover Independence Results

Theorem (Brendle 2006)

cov(N ) = ℵ2 +♣ is consistent.

Theorem (Džamonja and Shelah 1999 and Brendle 2006)

add(M) = ℵ2 +♣ is consistent.

Theorem (Truss 1984)

If |• = ℵ1, then min
(

cov(M), cov(N )
)

= ℵ1.
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Polarised Partition Relations

Definitions

Definition (
α

β

)
−→

(
κ

λ

)
ξ

means that for every colouring χ : α× β −→ ξ there are
A ∈ [α]κ and B ∈ [β]λ such that χ is constant on A× B .

Definition (
α

β

)
−→

[
κ µ
∨

λ ν

]
ξ

means that for every colouring χ : α× β −→ ξ there are
(A ∈ [α]κ and B ∈ [β]λ) or (A ∈ [α]µ and B ∈ [β]ν) such
that χ

[
A× B

]
6= ξ.
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Polarised Partition Relations

Results by Garti & Shelah

Proposition (Garti, Shelah, 2014)

Suppose ℵ0 < µ < s.

Then

(
µ

ω

)
−→

(
µ

ω

)
2

iff cf(µ) > ω.

Proposition (Garti, Shelah, 2014)

Suppose r < µ 6 c.

Then

(
µ

ω

)
−→

(
µ

ω

)
2

whenever cf(µ) > r.
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Polarised Partition Relations

Questions asked

Problem ([016GS, Problem 2.6])

Is it consistent that d = ℵ1 and

(
d

ω

)
−→

(
d

ω

)
2
?

Problem ([016GS, Problem 2.10])

Is it consistent that i = ℵ1 and

(
i

ω

)
−→

(
i

ω

)
2
?
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Polarised Partition Relations

Questions asked. . . and answered

Problem ([016GS, Problem 2.1.])

Suppose x is a nicely defined invariant which satisfies

x = ℵ1 ⇒
(
x

ω

)
6−→
(
x

ω

)
2
. Does it follow that x = c?

Proposition (W., 2016)

Suppose that b = d. Then

(
d

ω

)
6−→
[
b
ω

]
ℵ0

Corollary

No, no and probably no.
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Polarised Partition Relations

Questions asked. . . and answered
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Polarised Partition Relations

Another Result

Theorem (Sierpiński 1933 and Erdős, Hajnal, Rado, 1965)

If CH , then

(
ω1
ω

)
6−→
(
ω1
ω

)
2
.

Theorem (Chen, W., 2016)

If d = ℵ1, then

(
ω1
ω1

)
6−→
[
ω1 ω
∨

ω ω1

]
ℵ0
.
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Unpolarised Partition Relations

Definition

Definition

α −→ (β0,0 ∨ · · · ∨ β0,k0 , . . . , βn,0 ∨ · · · ∨ βn,kn)i means that

for every set A of size α and every colouring χ : [A]i −→ n + 1
there is an ` 6 n, an m 6 k` and a set B ⊂ A of size β`,m
such that χ is constant with value ` on [B]i .
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Unpolarised Partition Relations

History

Theorem (Hajnal, 1971)

If CH, then ω21 6−→(ω21, 3)2.

Theorem (Erdős, Hajnal, 1971)

ω21 −→ (α, 3)2 for all α < ω21.

ω21 −→ (α, n)2 for all α < ω1ω and all n < ω.

Theorem (Takahashi, 1987)

If |• = ℵ1, then ω21 6−→(ω21, 3)2.
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Unpolarised Partition Relations

History

Theorem (Baumgartner, Hajnal, 1987)

ω21 −→ (ω1ω, 3, 3)2

If CH , then ω21 6−→(ω1ω, 4)2.

Theorem (Larson, 1998)

If d = ℵ1, then ω21 6−→(ω21, 3)2.
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Unpolarised Partition Relations

History. . . & New Results

Theorem (Hajnal, 1971)

If CH, then ω1 6−→(ω1, ω + 2)2.

Theorem (Todorcevic, 1989)

If b = ℵ1, then ω1 6−→(ω1, ω + 2)2.

Theorem (Chen, W., 2016)

min(b, |•) = ℵ1 implies ω1 6−→(ω1, ω + 2)2.
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Unpolarised Partition Relations

History. . . & New Results

Theorem (Erdős, Hajnal, 1971)

If CH, then ω1ω 6−→(ω1ω, 3)2.

Theorem (Takahashi, 1987)

If max(d, |•) = ℵ1, then ω1ω 6−→(ω1ω, 3)2.

Theorem (Baumgartner, 1989)

If MA(ℵ1), then ω1ω −→ (ω1ω, n)2 for all natural numbers n.

Theorem (Larson, 1998)

If d = ℵ1, then ω1ω 6−→(ω1ω, 3)2.
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Unpolarised Partition Relations

History. . . & New Results

Theorem (W., 2016)

If min
(
d,max(b, |•)

)
= ℵ1, then ω1ω 6−→(ω1ω, 3)2.

Corollary

If max
(
b,min(d, |•)

)
= ℵ1, then ω1ω 6−→(ω1ω, 3)2.
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Scattered Orders

Definitions

Definition

1 A linear order ϕ is κ-dense if for every x , y ∈ ϕ with
x < y the set {z ∈ ϕ | x < z < y} has cardinality κ.

2 A linear order ϕ is κ-saturated if for every X ,Y ∈ [ϕ]<κ

with ∀x ∈ X∀y ∈ Y : x < y the set
{z ∈ ϕ | ∀x ∈ X∀y ∈ Y : x < z < y} is nonempty.
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Scattered Orders

Definitions

Definition (Džamonja, Thompson, 2006)

Suppose κ is an infinite, regular cardinal, and ϕ is a linear
order type.

1 ϕ is κ-scattered if there is no κ-dense order type τ such
that τ ≤ ϕ.

2 ϕ is weakly κ-scattered if there is no κ-saturated τ such
that τ ≤ ϕ.

Remark

Being scattered means being ℵ0-scattered.
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Scattered Orders

Definitions

Definition

Suppose κ is an infinite, regular cardinal, µ is an infinite
cardinal, ϕ is a linear order type, and P is an order of type ϕ.
ϕ is 〈κ, µ〉-scattered (resp. weakly 〈κ, µ〉-scattered) if there is
ν < µ and a sequence of suborders 〈Pζ | ζ < ν〉 of P such
that otp(Pζ) is κ-scattered (resp. weakly κ-scattered) for all
ζ < ν and

⋃
ζ<ν Pζ = P .

Remark

Being σ-scattered means being 〈ℵ0,ℵ1〉-scattered.
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Scattered Orders

Results

Theorem (Erdős, Milner, 1972)

ω1+νh −→ (ω1+ν , 2h)2 for all countable ordinals ν and all
natural numbers n.

Theorem (Lambie-Hanson, W., 2016)

Suppose κ<κ = κ and ϕ is a weakly κ-scattered linear order
type of size at most κ. Then there is a weakly κ-scattered
linear order type τ of size at most κ such that, for all n < ω,
τ −→ (ϕ, n)2.

Corollary (W. but probably Galvin before)

For all countable scattered linear orders ϕ there is a countable
scattered linear order τ such that for all n < ω we have
τ −→ (ϕ, n)2.
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Scattered Orders

The Milner-Rado-Paradox and a Strong Negative Partition Theorem

Paradox (Milner, Rado, 1965)

For every cardinal κ, every ordinal α < κ+ can be writen as a
union

⋃
n<ω Pn such that there is no n < ω for which Pn has

a suborder of type κn.

Theorem (Erdős, Hajnal, 1971)

If ω1ω 6−→(ω1ω, 3)2, then α 6−→(ωω1 , 3)2 for all α < ω2.
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Scattered Orders

Order Type Arithmetic

Definition

Let ϕ be an order type.

1 ϕ∗ denotes the reverse of ϕ.

2 The product type τϕ is the type of lexicographically
ordered set of pairs in P × T for an order P of type ϕ
and an order T of type τ .

3 Analogously, for an order-type ϕ and a natural number n
the type ϕn denotes the type of lexicographically ordered
n-tuples of elements of P for an order P of type ϕ.
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Scattered Orders

Order Type Arithmetic

Definition

(αα∗)ω is the order type of Sα := α<ω, ordered by ≺α as
follows:
For s, t ∈ Sα let

s ≺ t ⇔



`(s) is even and `(t) is odd or

`(s) and `(t) are both even and `(t) < `(s) or

`(s) and `(t) are both odd and `(s) < `(t) or

`(s) = `(t) is even and t <lex s or

`(s) = `(t) is odd and s <lex t.
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Scattered Orders

More Results

Theorem (Lambie-Hanson, W., 2016)

Let κ, µ be infinite regular cardinals such that κ ≤ µ, and
suppose ϕ is a 〈κ,max(ℵ1, κ)〉-scattered linear order type of
size at most µ. Then every order P of type ϕ can be written
as a union P =

⋃
n<ω Pn such that there is no n < ω for

which Pn has a suborder of type µn, (µn)∗, (κκ∗)n, or (κ∗κ)n.

Corollary

Suppose ϕ is an σ-scattered linear order type of size at most
ℵ1. Then every order P of type ϕ can be written as a union
P =

⋃
n<ω Pn such that there is no n < ω for which Pn has a

suborder of type ωn1 , (ωn1)∗ or (ωω∗)n.
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Scattered Orders

More Results

Theorem (W., 2016)

Assume ω1ω 6−→(ω1ω, 3)2, let τ be a σ-scattered linear order
type of size at most ℵ1, and let ρ be an order type such that
(ωω∗)n ≤ ρ for all natural numbers n. Then

τ 6−→
(
ωω1 ∨ (ωω1 )∗ ∨ ω1ρ ∨ ω

∗
1ρ ∨ ρω1 ∨ ρω

∗
1, 3
)2
.

Corollary

Assume max
(
b,min(d, |•)

)
= ℵ1, and let τ be a σ-scattered

linear order type of size at most ℵ1. Then

τ 6−→
(
ωω1 ∨ (ω

ω
1 )
∗ ∨ ω1(ωω

∗)ω ∨ ω∗1(ωω
∗)ω ∨ (ωω∗)ωω1 ∨ (ωω

∗)ωω∗1 , 3
)2
.
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Coda

Remarks

Theorem (Todorcevic, 1983 and Malliaris, Shelah, 2013)

PID +t > ℵ1 implies ω1 −→ (ω1, α)2 for all ordinals α.

General Problems (Raghavan, Todorcevic, 2014)

1 Given a statement ϕ which is a consequence of
PID + MAℵ1 , find a cardinal invariant x such that ϕ is
equivalent to x > ω1 over ZFC + PID.

2 Given a statement ϕ which is a consequence of
PID +p > ω1, investigate whether ϕ is equivalent to
p > ω1 over ZFC + PID.
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Coda

Questions

Question

1 Does b = ℵ1 imply ω1ω 6−→(ω1ω, 3)2?

2 Does |• = ℵ1 imply ω1ω 6−→(ω1ω, 3)2?

Question (Larson)

1 Does ω21 6−→(ω1ω, 4)2 follow from a nontrivial cardinal
characteristic assumption?

2 Is any cardinal characteristic assumption needed to prove
ω21 6−→(ω21, 3)2?
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Coda

Questions

Question

Can the conclusion of the last Six-Alternatives-Theorem be
strengthened(if necessary at the price of strengthening the
assumptions)?
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