Cardinal Invariants, Partition Relations, and Generalised Scattered Orders 03E02, 03E17, 05D10, 06A05

Thilo Weinert

Department of Mathematics, Ben-Gurion-University of the Negev, Israël Joint work with William Chen and Chris Lambie-Hanson

45th Winterschool, Hejnice, Monday, 30th of January 2017, 9:00-9:40

Sac

1

Cardinal Characteristics Definitions A Diagram

Other Combinatorial Principles Definitions

Definitions A Diagram Crossover Independence Results

Polarised Partition Relations

Definitions Results by Garti & Shelah Questions asked Questions asked...and answered Another Result

Unpolarised Partition Relations

Definition History History...& New Results

Scattered Orders

Definitions Results The Milner-Rado-Paradox and a Strong Negative Partition Theorem Order Type Arithmetic More Results

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Coda

Remarks Questions Yes, we scan!

- Cardinal Characteristics

Definitions

Definition

If $f, g \in {}^{\omega}\omega$ then f dominates g iff there is a natural number k such that for all natural numbers $n \in \omega \setminus k$ we have f(n) > g(n). A family $F \subset {}^{\omega}\omega$ is unbounded iff for all $g \in {}^{\omega}\omega$ there is an $f \in F$ not dominated by g and it is dominating if for every $g \in {}^{\omega}\omega$ there is an $f \in F$ which dominates g.

 $b := \min \{ \#F \mid F \text{ is unbounded.} \}$ $0 := \min \{ \#F \mid F \text{ is dominating.} \}$

- Cardinal Characteristics

Definitions

Definition

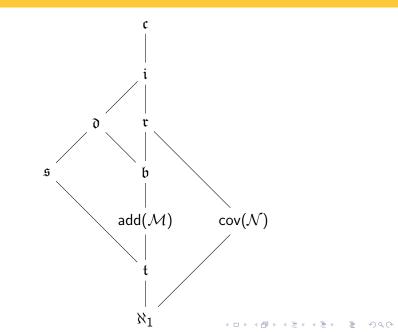
For $x, y \in [\omega]^{\omega}$ we say that x splits y if both $y \cap x$ and $y \setminus x$ are infinite. A family $F \subset [\omega]^{\omega}$ is called splitting if for all $x \in [\omega]^{\omega}$ there is a $y \in F$ which splits x. It is reaping if for all $x \in [\omega]^{\omega}$ there is a $y \in F$ which is not split by x.

> $\mathfrak{s} := \min \{ \#F \mid F \text{ is splitting.} \}$ $\mathfrak{r} := \min \{ \#F \mid F \text{ is reaping.} \}$

> > ・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Cardinal Characteristics

└─A Diagram



Other Combinatorial Principles

Definitions

Definition (Ostaszewski 1976)

♣ is the statement that there is a sequence $\langle A_{\alpha} | \alpha < \omega_1 \rangle$ such that for every α , A_{α} is cofinal in $\omega \alpha$ and for every uncountable $X \subset \omega_1$ there is an $\alpha < \omega_1$ with $A_{\alpha} \subset X$.

Definition (Broverman, Ginsburg, Kunen, Tall, 1978 and Fuchino, Shelah, Soukup 1997)

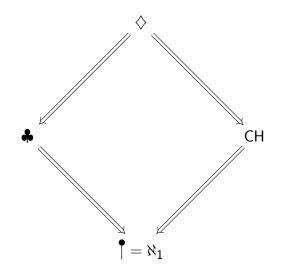
$$\blacksquare := \min \{ \# X \mid X \subseteq [\omega_1]^{\omega} \land \forall y \in [\omega_1]^{\omega_1} \exists x \in X : x \subseteq y \}.$$

Theorem (Baumgartner 1976)

 $< \mathfrak{c}$ is consistent.

-Other Combinatorial Principles

└─A Diagram



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Other Combinatorial Principles

Crossover Independence Results

Theorem (Brendle 2006)

 $cov(\mathcal{N}) = \aleph_2 + \clubsuit$ is consistent.

Theorem (Džamonja and Shelah 1999 and Brendle 2006)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 $\operatorname{add}(\mathcal{M}) = \aleph_2 + \clubsuit$ is consistent.

Theorem (Truss 1984)

If
$$\[= \aleph_1, \text{ then } \min (\operatorname{cov}(\mathcal{M}), \operatorname{cov}(\mathcal{N})) = \aleph_1. \]$$

Polarised Partition Relations

Definitions

Definition

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \longrightarrow \begin{pmatrix} \kappa \\ \lambda \end{pmatrix}_{\xi}$$

means that for every colouring $\chi : \alpha \times \beta \longrightarrow \xi$ there are $A \in [\alpha]^{\kappa}$ and $B \in [\beta]^{\lambda}$ such that χ is constant on $A \times B$.

Definition

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \longrightarrow \begin{bmatrix} \kappa & \mu \\ \lambda & \nu \end{bmatrix}_{\xi}$$

means that for every colouring $\chi : \alpha \times \beta \longrightarrow \xi$ there are $(A \in [\alpha]^{\kappa} \text{ and } B \in [\beta]^{\lambda})$ or $(A \in [\alpha]^{\mu} \text{ and } B \in [\beta]^{\nu})$ such that $\chi[A \times B] \neq \xi$.

-Polarised Partition Relations

Results by Garti & Shelah

Proposition (Garti, Shelah, 2014)

Suppose $\aleph_0 < \mu < \mathfrak{s}$.

Then
$$\begin{pmatrix} \mu \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \mu \\ \omega \end{pmatrix}_2$$
 iff $cf(\mu) > \omega$.

Proposition (Garti, Shelah, 2014)

Suppose $\mathfrak{r} < \mu \leqslant \mathfrak{c}$.

Then
$$\begin{pmatrix} \mu \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \mu \\ \omega \end{pmatrix}_2$$
 whenever $cf(\mu) > \mathfrak{r}$.

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへで

-Polarised Partition Relations

Questions asked

Problem ([016GS, Problem 2.6])
Is it consistent that
$$\mathfrak{d} = \aleph_1$$
 and $\begin{pmatrix} \mathfrak{d} \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \mathfrak{d} \\ \omega \end{pmatrix}_2$?

Problem ([016GS, Problem 2.10])

Is it consistent that
$$\mathfrak{i} = \aleph_1$$
 and $\begin{pmatrix} \mathfrak{i} \\ \omega \end{pmatrix} \longrightarrow \begin{pmatrix} \mathfrak{i} \\ \omega \end{pmatrix}_2$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

-Polarised Partition Relations

Questions asked...and answered

Problem ([016GS, Problem 2.1.])

Suppose *x* is a nicely defined invariant which satisfies

$$\mathfrak{x} = \aleph_1 \Rightarrow \begin{pmatrix} \mathfrak{x} \\ \omega \end{pmatrix} \not\rightarrow \begin{pmatrix} \mathfrak{x} \\ \omega \end{pmatrix}_2$$
. Does it follow that $\mathfrak{x} = \mathfrak{c}$?

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

-Polarised Partition Relations

Questions asked...and answered

Problem ([016GS, Problem 2.1.])

Suppose *x* is a nicely defined invariant which satisfies

$$\mathfrak{x} = \aleph_1 \Rightarrow \begin{pmatrix} \mathfrak{x} \\ \omega \end{pmatrix} \not\rightarrow \begin{pmatrix} \mathfrak{x} \\ \omega \end{pmatrix}_2$$
. Does it follow that $\mathfrak{x} = \mathfrak{c}$?

Proposition (W., 2016) Suppose that $\mathfrak{b} = \mathfrak{d}$. Then $\begin{pmatrix} \mathfrak{d} \\ \omega \end{pmatrix} \not\rightarrow \begin{bmatrix} \mathfrak{b} \\ \omega \end{bmatrix}_{\aleph_0}$

(日)、

200

-Polarised Partition Relations

Questions asked...and answered

Problem ([016GS, Problem 2.1.])

Suppose *x* is a nicely defined invariant which satisfies

$$\mathfrak{x} = \aleph_1 \Rightarrow \begin{pmatrix} \mathfrak{x} \\ \omega \end{pmatrix} \not\rightarrow \begin{pmatrix} \mathfrak{x} \\ \omega \end{pmatrix}_2$$
. Does it follow that $\mathfrak{x} = \mathfrak{c}$?

・ロト ・四ト ・ヨト ・ヨト

3

SQA

Proposition (W., 2016)

uppose that
$$\mathfrak{b} = \mathfrak{d}$$
. Then $\begin{pmatrix} \mathfrak{d} \\ \omega \end{pmatrix} \not \rightarrow \begin{bmatrix} \mathfrak{b} \\ \omega \end{bmatrix}_{\aleph_0}$

Corollary

S

No, no and probably no.

-Polarised Partition Relations

Another Result

Theorem (Sierpiński 1933 and Erdős, Hajnal, Rado, 1965)

If CH , then
$$\binom{\omega_1}{\omega} \not\rightarrow \binom{\omega_1}{\omega}_2$$

Theorem (Chen, W., 2016)

If
$$\mathfrak{d} = \aleph_1$$
, then $\begin{pmatrix} \omega_1 \\ \omega_1 \end{pmatrix} \not \rightarrow \begin{bmatrix} \omega_1 & \omega \\ \omega & \omega_1 \end{bmatrix}_{\aleph_0}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Unpolarised Partition Relations

Definition

Definition

 $\alpha \longrightarrow (\beta_{0,0} \lor \cdots \lor \beta_{0,k_0}, \ldots, \beta_{n,0} \lor \cdots \lor \beta_{n,k_n})^i$ means that for every set A of size α and every colouring $\chi : [A]^i \longrightarrow n+1$ there is an $\ell \leq n$, an $m \leq k_\ell$ and a set $B \subset A$ of size $\beta_{\ell,m}$ such that χ is constant with value ℓ on $[B]^i$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Unpolarised Partition Relations

History

Theorem (Hajnal, 1971)

If CH, then $\omega_1^2 \not\rightarrow (\omega_1^2, 3)^2$.

$$\begin{split} & \omega_1^2 \longrightarrow (\alpha,3)^2 \text{ for all } \alpha < \omega_1^2. \\ & \omega_1^2 \longrightarrow (\alpha,n)^2 \text{ for all } \alpha < \omega_1 \omega \text{ and all } n < \omega. \end{split}$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

Theorem (Takahashi, 1987)

If
$$\[= \aleph_1, \text{ then } \omega_1^2 \not\rightarrow (\omega_1^2, 3)^2 \]$$

Unpolarised Partition Relations

History

Theorem (Baumgartner, Hajnal, 1987)

$$\omega_1^2 \longrightarrow (\omega_1 \omega, 3, 3)^2$$

If CH, then $\omega_1^2 \not\longrightarrow (\omega_1 \omega, 4)^2$.

200

Theorem (Larson, 1998) If $\mathfrak{d} = \aleph_1$, then $\omega_1^2 \not\rightarrow (\omega_1^2, 3)^2$.

Unpolarised Partition Relations

History... & New Results

Theorem (Hajnal, 1971)

If CH, then
$$\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$$
.

Theorem (Todorcevic, 1989)

If
$$\mathfrak{b} = \aleph_1$$
, then $\omega_1 \not\longrightarrow (\omega_1, \omega + 2)^2$.

Theorem (Chen, W., 2016) $\min(\mathfrak{b}, \uparrow) = \aleph_1 \text{ implies } \omega_1 \not\longrightarrow (\omega_1, \omega + 2)^2.$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Unpolarised Partition Relations

History... & New Results

Theorem (Erdős, Hajnal, 1971)

If CH, then $\omega_1 \omega \not\rightarrow (\omega_1 \omega, 3)^2$.

Theorem (Takahashi, 1987)

If
$$\max(\mathfrak{d}, \uparrow) = \aleph_1$$
, then $\omega_1 \omega \not\longrightarrow (\omega_1 \omega, 3)^2$

Theorem (Baumgartner, 1989)

If MA(\aleph_1), then $\omega_1 \omega \longrightarrow (\omega_1 \omega, n)^2$ for all natural numbers n.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (Larson, 1998)

If
$$\mathfrak{d} = \aleph_1$$
, then $\omega_1 \omega \not\longrightarrow (\omega_1 \omega, 3)^2$.

Unpolarised Partition Relations

History... & New Results

Theorem (W., 2016)
If min
$$(\mathfrak{d}, \max(\mathfrak{b}, \P)) = \aleph_1$$
, then $\omega_1 \omega \not\longrightarrow (\omega_1 \omega, 3)^2$.

Corollary

If max
$$(\mathfrak{b}, \min(\mathfrak{d}, \uparrow)) = \aleph_1$$
, then $\omega_1 \omega \not\longrightarrow (\omega_1 \omega, 3)^2$.

Scattered Orders

Definitions

Definition

- **1** A linear order φ is κ -dense if for every $x, y \in \varphi$ with x < y the set $\{z \in \varphi \mid x < z < y\}$ has cardinality κ .
- A linear order φ is κ-saturated if for every X, Y ∈ [φ]^{<κ} with ∀x ∈ X∀y ∈ Y : x < y the set {z ∈ φ | ∀x ∈ X∀y ∈ Y : x < z < y} is nonempty.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Scattered Orders

Definitions

Definition (Džamonja, Thompson, 2006)

Suppose κ is an infinite, regular cardinal, and φ is a linear order type.

- **1** φ is κ -scattered if there is no κ -dense order type τ such that $\tau \leq \varphi$.
- **2** φ is *weakly* κ -scattered if there is no κ -saturated τ such that $\tau \leq \varphi$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Remark

Being scattered means being \aleph_0 -scattered.

Scattered Orders

Definitions

Definition

Suppose κ is an infinite, regular cardinal, μ is an infinite cardinal, φ is a linear order type, and P is an order of type φ . φ is $\langle \kappa, \mu \rangle$ -scattered (resp. weakly $\langle \kappa, \mu \rangle$ -scattered) if there is $\nu < \mu$ and a sequence of suborders $\langle P_{\zeta} | \zeta < \nu \rangle$ of P such that $\operatorname{otp}(P_{\zeta})$ is κ -scattered (resp. weakly κ -scattered) for all $\zeta < \nu$ and $\bigcup_{\zeta < \nu} P_{\zeta} = P$.

Remark

Being σ -scattered means being $\langle \aleph_0, \aleph_1 \rangle$ -scattered.

Scattered Orders

Results

Theorem (Erdős, Milner, 1972)

 $\omega^{1+\nu h} \longrightarrow (\omega^{1+\nu}, 2^h)^2$ for all countable ordinals ν and all natural numbers n.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Scattered Orders

Results

Theorem (Erdős, Milner, 1972)

 $\omega^{1+\nu h} \longrightarrow (\omega^{1+\nu}, 2^h)^2$ for all countable ordinals ν and all natural numbers n.

Theorem (Lambie-Hanson, W., 2016)

Suppose $\kappa^{<\kappa} = \kappa$ and φ is a weakly κ -scattered linear order type of size at most κ . Then there is a weakly κ -scattered linear order type τ of size at most κ such that, for all $n < \omega$, $\tau \longrightarrow (\varphi, n)^2$.

Corollary (W. but probably Galvin before)

For all countable scattered linear orders φ there is a countable scattered linear order τ such that for all $n < \omega$ we have $\tau \longrightarrow (\varphi, n)^2$.

Scattered Orders

The Milner-Rado-Paradox and a Strong Negative Partition Theorem

Paradox (Milner, Rado, 1965)

For every cardinal κ , every ordinal $\alpha < \kappa^+$ can be writen as a union $\bigcup_{n < \omega} P_n$ such that there is no $n < \omega$ for which P_n has a suborder of type κ^n .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (Erdős, Hajnal, 1971)

If $\omega_1 \omega \not\rightarrow (\omega_1 \omega, 3)^2$, then $\alpha \not\rightarrow (\omega_1^\omega, 3)^2$ for all $\alpha < \omega_2$.

Scattered Orders

Order Type Arithmetic

Definition

Let φ be an order type.

- **1** φ^* denotes the reverse of φ .
- 2 The product type τφ is the type of lexicographically ordered set of pairs in P × T for an order P of type φ and an order T of type τ.
- Analogously, for an order-type φ and a natural number n the type φⁿ denotes the type of lexicographically ordered n-tuples of elements of P for an order P of type φ.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Scattered Orders

Order Type Arithmetic

Definition

 $(\alpha \alpha^*)^{\omega}$ is the order type of $S_{\alpha} := \alpha^{<\omega}$, ordered by \prec_{α} as follows:

For
$$s, t \in S_{\alpha}$$
 let
 $s \prec t \Leftrightarrow \begin{cases} \ell(s) \text{ is even and } \ell(t) \text{ is odd or} \\ \ell(s) \text{ and } \ell(t) \text{ are both even and } \ell(t) < \ell(s) \text{ or} \\ \ell(s) \text{ and } \ell(t) \text{ are both odd and } \ell(s) < \ell(t) \text{ or} \\ \ell(s) = \ell(t) \text{ is even and } t <_{\text{lex}} s \text{ or} \\ \ell(s) = \ell(t) \text{ is odd and } s <_{\text{lex}} t. \end{cases}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Scattered Orders

More Results

Theorem (Lambie-Hanson, W., 2016)

Let κ, μ be infinite regular cardinals such that $\kappa \leq \mu$, and suppose φ is a $\langle \kappa, \max(\aleph_1, \kappa) \rangle$ -scattered linear order type of size at most μ . Then every order P of type φ can be written as a union $P = \bigcup_{n < \omega} P_n$ such that there is no $n < \omega$ for which P_n has a suborder of type $\mu^n, (\mu^n)^*, (\kappa \kappa^*)^n$, or $(\kappa^* \kappa)^n$.

Corollary

Suppose φ is an σ -scattered linear order type of size at most \aleph_1 . Then every order P of type φ can be written as a union $P = \bigcup_{n < \omega} P_n$ such that there is no $n < \omega$ for which P_n has a suborder of type ω_1^n , $(\omega_1^n)^*$ or $(\omega\omega^*)^n$.

Scattered Orders

More Results

Theorem (W., 2016)

Assume $\omega_1 \omega \rightarrow (\omega_1 \omega, 3)^2$, let τ be a σ -scattered linear order type of size at most \aleph_1 , and let ρ be an order type such that $(\omega \omega^*)^n \leq \rho$ for all natural numbers n. Then

$$\tau \not\longrightarrow (\omega_1^{\omega} \vee (\omega_1^{\omega})^* \vee \omega_1 \rho \vee \omega_1^* \rho \vee \rho \omega_1 \vee \rho \omega_1^*, 3)^2.$$

Corollary

Assume $\max(\mathfrak{b}, \min(\mathfrak{d}, \P)) = \aleph_1$, and let τ be a σ -scattered linear order type of size at most \aleph_1 . Then

 $\tau \not \to (\omega_1^{\omega} \vee (\omega_1^{\omega})^* \vee \omega_1(\omega\omega^*)^{\omega} \vee \omega_1^*(\omega\omega^*)^{\omega} \vee (\omega\omega^*)^{\omega}\omega_1 \vee (\omega\omega^*)^{\omega}\omega_1^*, 3)^2.$

- Coda

Remarks

Theorem (Todorcevic, 1983 and Malliaris, Shelah, 2013)

 $\mathsf{PID} + \mathfrak{t} > \aleph_1 \text{ implies } \omega_1 \longrightarrow (\omega_1, \alpha)^2 \text{ for all ordinals } \alpha.$

General Problems (Raghavan, Todorcevic, 2014)

- **1** Given a statement φ which is a consequence of $PID + MA_{\aleph_1}$, find a cardinal invariant \mathfrak{x} such that φ is equivalent to $\mathfrak{x} > \omega_1$ over ZFC + PID.
- Given a statement φ which is a consequence of PID +p > ω₁, investigate whether φ is equivalent to p > ω₁ over ZFC + PID.

Questions

Question

- Does $\mathfrak{b} = \aleph_1$ imply $\omega_1 \omega \not\rightarrow (\omega_1 \omega, 3)^2$?
- 2 Does $= \aleph_1$ imply $\omega_1 \omega \rightarrow (\omega_1 \omega, 3)^2$?

Question (Larson)

- Does $\omega_1^2 \not\longrightarrow (\omega_1 \omega, 4)^2$ follow from a nontrivial cardinal characteristic assumption?
- **2** Is any cardinal characteristic assumption needed to prove $\omega_1^2 \not\rightarrow (\omega_1^2, 3)^2$?

Coda

Questions

Question

Can the conclusion of the last Six-Alternatives-Theorem be strengthened(if necessary at the price of strengthening the assumptions)?

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- Coda

Questions

Shimon Garti and Saharon Shelah.

Open and solved problems concerning polarized partition relations. Fund. Math., 234(1):1-14, 2016, doi:10.4064/fm763-10-2015, http://dx.doi.org/10.4064/fm763-10-2015.

Mirna Džamonja and Katherine Thompson.

A poset hierarchy.

Cent. Eur. J. Math., 4(2):225-241 (electronic), 2006, doi:10.1007/s11533-006-0001-1, http://dx.doi.org/10.1007/s11533-006-0001-1.

Jean Ann Larson.

An ordinal partition from a scale. In Set theory (Curaçao, 1995; Barcelona, 1996), pages 109–125. Kluwer Acad. Publ., Dordrecht, 1998.

Stevo Todorčević.

Partition problems in topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989, doi:10.1090/conm/084, http://dx.doi.org/10.1090/conm/084.

Joji Takahashi.

Two negative partition relations.

Period. Math. Hungar., 18(1):1-6, 1987, doi:10.1007/BF01849028, http://dx.doi.org/10.1007/BF01849028.

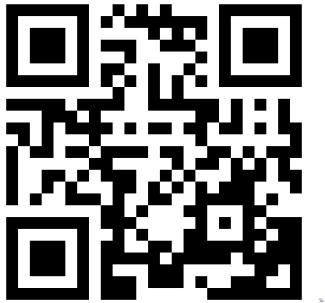
Paul Erdős and Andras Hajnal.

Ordinary partition relations for ordinal numbers. Period. Math. Hungar., 1(3):171-185, 1971, http://www.renyi.hu/~p_erdos/1971-15.pdf.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

Coda

└─Yes, we scan!



≣ ▶ ≣ • • ९ < ભ